April 2014 |
[an error occurred while processing this directive] |
Simple and
Elegant Building Energy Modeling for All
A Technology Transfer Tale
|
Kyra Epstein Bay Area freelance writer |
This
feature story was published on the website of the Environmental Energy
Technologies Division, Lawrence Berkeley National Laboratory.
Articles |
Interviews |
Releases |
New Products |
Reviews |
[an error occurred while processing this directive] |
Editorial |
Events |
Sponsors |
Site Search |
Newsletters |
[an error occurred while processing this directive] |
Archives |
Past Issues |
Home |
Editors |
eDucation |
[an error occurred while processing this directive] |
Training |
Links |
Software |
Subscribe |
[an error occurred while processing this directive] |
A
building owner changes the building's thermostat setting, allowing the
indoor temperature to increase a couple of degrees for an entire
afternoon. But how much energy was actually saved? To know the answer
for sure, the energy actually used must be compared to the energy that
would have been used if they hadn't made the change…but how does the
building owner find that out?
The answer is provided by a "baseline energy model," a statistical
formula that, based on the analysis of previous energy use, takes into
account the time of day, the day of the week, and the outdoor air
temperature to predict the building's energy consumption as a function
of time if the building were operated normally.
When Environmental Energy Technologies Division (EETD) researcher
Phillip Price began working with building energy data a few years ago,
he discovered that the standard baseline energy models are very simple.
"And that makes sense," says Price, "because usually the only useful
explanatory variable you have is outdoor air temperature. If your only
variables are time and temperature, you may not get much benefit from a
complicated model." EETD is a Division of the Lawrence Berkeley
National Laboratory (Berkeley Lab).
But he also discovered that the standard approaches have some flaws, so
he made improvements. He developed a model that produces more accurate
predictions in most buildings, but isn't much more complicated than
previous models. He and graduate student Johanna Mathieu published the
model in 2011.
Price has worked with statistical models for 20 years at Berkeley Lab.
In the early 1990s he became one of the foremost authorities on the
spatial and statistical distribution of indoor radon, and co-developed
state-of-the-art algorithms for mapping airborne pollutant
concentrations using optical remote sensing data.
He turned his hand to statistically modeling electric load data several
years ago. While researching for his model development, Price noted
changes happening in the industry, which dramatically increased the
amount of energy use data available.
"Until not too long ago, the only energy use data people had were
monthly use data," Price said. "Now that we have 'smart meters,' we've
started getting more data and that has opened up many possibilities.
The idea was to look at what people were doing and see if we could do
better—and that effort led to this model."
Looking at energy use in much smaller increments of time led to
additional needs for modeling. Price wanted to include a simple way for
building designers and operators to measure the outcome of energy
efficiency measures looking separately at the effect of temperature
during different building occupancy and use scenarios, as well as
taking into account the use of many different pieces of equipment and
technology.
"What you want in a decent model is something that takes temperature
into consideration in a different way when the building is operating
and when it is not," Price said. "As an example, suppose we have a
night and day that are 75 degrees all the way through. At night, we
wouldn't be conditioning the building; during the day, you are cooling.
Dependence on temperature is also something that changes," he said.
"Also, even when the heating and cooling systems are operating, there
is usually some range of temperature when you don't have to cool or
heat. Below that range you need to heat, above that range you need to
cool. If the outdoor temperature gets warm enough, at some point the
cooling system is working flat out and you can't use more, so energy
use stays the same. So rather than a straight-line dependence on
temperature, it can be a curvy line," he said.
Measurements of energy use in a building (black dots) plotted with electricity load predicted by the LBNL regression model.
The model has been helpful to a number of industry organizations that
have used his methods as a basis for business functions and tools.
Tom Arnold, co-founder and CEO of Gridium, a Bay Area company that
helps commercial customers make sense of the flood of energy data
provided by smart meters, ran across a paper written by Phil Price
about his model and used it to catalyze his work early in the company's
history.
"His model was a kernel that catalyzed our work," Arnold said. "I think
this is quite common; you get a little bit of government-funded
research and it's digested by the private sector," he said.
[an error occurred while processing this directive]
Arnold said that he needed to find a model that applied time-theory
statistics to the energy use issues his customers face, and the model
was a simple way to begin approaching it. Now, Arnold's company
analyzes data from 110 million square feet of buildings, using Cloud
computing to run tens of thousands of modeling scenarios across many
servers, providing weekly analysis of building energy performance for
customers.
A Berkeley company called QuEST also used the model as a foundation for
their work. QuEST works in commercial utility programs to identify
energy efficiency measures and verify energy savings.
"I had a research project from the California Energy Commission to
develop a measurement and verification tool, so we needed an energy
model," said David Jump, principal at QuEST. "We talked with LBNL,
Phil, and some others. They had already developed this modeling code
for other projects, and we went with this one because we wanted to
model energy use on as frequent as 15-minute intervals over the period
of a day," he said.
Jump said they started with Pacific Gas & Electric's desktop tool,
Universal Translator, which is fairly well known in the energy
efficiency industry, and then added measurement and verification
capability based on Price's model.
"I introduced our tool at the last ASHRAE meeting, and everyone wanted
a copy," Jump said. "Here is a tool that has soup-to-nuts measurement
and verification capabilities, all open source. And it basically
eliminates the need for highly skilled, high-priced people to do
modeling work," he said.
So far, companies that have been using Price's approach have had to
write their own computer code based on his publications, but that's
about to change: an improved version of the model is soon to be
released as part of an open source software distribution.
Price continues to work on baseline energy models, and he is excited
about a new approach he is developing.
"The simple model works fine for predicting energy consumption in the
near future, but it's not ideal for other applications such as
detecting sudden changes in a building's energy consumption pattern,"
said Price. "The new approach is very well suited to that kind of
application, but you pay a price in increased complexity. I think the
simple model is going to be around for a while," he said.
About the Author
Kyra Epstein is a Bay Area freelance writer who covers energy and environmental issues and works as a contract writer.
[an error occurred while processing this directive]
[Click Banner To Learn More]
[Home Page] [The Automator] [About] [Subscribe ] [Contact Us]