Sedona Framework – Best Opportunity for Open Control

HVAC Applications – An SI's Perspective

Jon Vietti Owner - DDC Support Services

THE WORLD'S LARGEST HVACR MARKETPLACE

JAN 30-FEB 1 LAS VEGAS 2017

- Why use Sedona unitary controllers?
- What HVAC applications are a good fit with Sedona unitary controllers?
- How are Sedona HVAC applications produced?
- HVAC Application Example: Fan Coil Unit (FCU)

Non-proprietary, open source

- Non-proprietary, open source
- Project cost savings

- Non-proprietary, open source
- Project cost savings
- Low cost or no-cost programming resources

- Non-proprietary, open source
- Project cost savings
- Low cost or no-cost programming resources
- Portability between Sedona manufactures and developers

- Non-proprietary, open source
- Project cost savings
- Low cost or no-cost programming resources
- Portability between Sedona manufactures and developers
- MAIN REASON: Similarity of Niagara AX/N4

What HVAC applications are a good fit with Sedona unitary controllers?

- RTU (AHU)
- FCU 4 pipe/2pipe
- ERV Heat Wheel
- Heat Pump w/Aux heat
- Variable Demand Exhaust
- Multi-pump w/variable flow
- Boiler Plant
- Water Source Heat Pump
- ERU Energy Recovery WWHP
- Multi-zone Slab Heat

1. Convert Engineer's SOO into a Programmer's SOO

- 1. Convert Engineer's SOO into a Programmer's SOO
- 2. Develop a comprehensive "Points List"

		_					
	Master Points List for BASco	aster Points List for BAScontrol22 configured as RTUgeneric device - rev8.30.2016					
	BACnet Name	Туре	Object ID	Sedona Name	Sedona Type	Sedona ID	Notes
	ZoneTemp	Numeric Point	analogInput:1	ZN_TEMP	CControls_BASC22_IO	UI1	Local 10k T3 Thermistor
	ZoneSetpoint	Numeric Point	analogInput:2	ZNL_SET	CControls_BASC22_IO	UI2	Local 10k ohm slider
	SupAirTemp	Numeric Point	analogInput:3	SA_TEMP	CControls_BASC22_IO	UI3	10k T3 Thermistor
	OutAirTemp	Numeric Point	analogInput:4	OA_TEMP	CControls_BASC22_IO	UI4	10k T3 Thermistor
	ZoneCO2	Numeric Point	analogInput:5	ZN_CO2	CControls_BASC22_IO	UI5	Def range: 10v=2000ppm
	EconDmpPos	Numeric Point	analogInput:6	ECON_AI	CControls_BASC22_IO	UI6	2-10vdc feedback
	MixAirTemp	Numeric Point	analogInput:7	MA_TEMP	CControls_BASC22_IO	UI7	10k T3 Thermistor
	OccupySwitch	Boolean Point	binaryInput:9	OCC_LOC	CControls_BASC22_IO	BI1	Local Occupancy Sensor or switch
	SfanProof	Boolean Point	binaryInput:10	SFAN_PF	CControls_BASC22_IO	BI2	CT or flow switch
	Shutdown	Boolean Point	binaryInput:11	SHUTDWN	CControls_BASC22_IO	BI3	Fire/smoke/emerg shutdown
	FilterFlag	Boolean Point	binaryInput:12	FILTER	CControls_BASC22_IO	BI4	Status for Trouble alert
	EconDmpSig	Numeric Writable	analogOutput:13	ECON_AO	CControls_BASC22_IO	AO1	2-10vdc actuator
	HeatAO_Sig	Numeric Writable	analogOutput:14	HT_AO	CControls_BASC22_IO	AO2	0-10vdc actuator
	CoolAO_Sig	Numeric Writable	analogOutput:15	CL_AO	CControls_BASC22_IO	AO3	0-10vdc actuator
	PExhAO_Sig	Numeric Writable	analogOutput:16	PEspeed	CControls_BASC22_IO	AO4	0-10vdc ECM or VFD signal
	G_Fan	Boolean Writable	binaryOutput:17	G_FAN	CControls_BASC22_IO	BO1	Supply fan enable
	Y1_CoolStage1	Boolean Writable	binaryOutput:18	Y1_CL1	CControls_BASC22_IO	BO2	DX Stage 1 enable
	W1_HeatStage1	Boolean Writable	binaryOutput:19	W1_HT1	CControls_BASC22_IO	BO3	Gas or Electric Stage 1
	W2_HeatStage2	Boolean Writable	binaryOutput:20	W2_HT2	CControls_BASC22_IO	BO4	Gas or Electric sStage 2
	Y2_CoolStage2	Boolean Writable	binaryOutput:21	Y2_CL2	CControls_BASC22_IO	BO5	DX Stage 2 enable
- 12							

- 1. Convert Engineer's SOO into a Programmer's SOO
- 2. Develop a comprehensive "Points List"
- 3. Pre-configure IO and virtual points on unitary controller

- 1. Convert Engineer's SOO into a Programmer's SOO
- 2. Develop a comprehensive "Points List"
- 3. Pre-configure IO and virtual points on unitary controller
- 4. Open wiresheet in SAE (or Workbench)

- 1. Convert Engineer's SOO into a Programmer's SOO
- 2. Develop a comprehensive "Points List"
- 3. Pre-configure IO and virtual points on unitary controller
- 4. Open wiresheet in SAE (or Workbench)
- 5. Select required components

- 1. Convert Engineer's SOO into a Programmer's SOO
- 2. Develop a comprehensive "Points List"
- 3. Pre-configure IO and virtual points on unitary controller
- 4. Open wiresheet in SAE (or Workbench)
- 5. Select required components
- 6. Link components

- 1. Convert Engineer's SOO into a Programmer's SOO
- 2. Develop a comprehensive "Points List"
- 3. Pre-configure IO and virtual points on unitary controller
- 4. Open wiresheet in SAE (or Workbench)
- 5. Select required components
- 6. Link components
- 7. Simulate / scenario test operation

HVAC Application Example: Fan Coil Unit (FCU)

HVAC Application Example: Fan Coil Unit (FCU)

Final Question: Why should an SI join and participate in the Sedona Alliance?

THE WORLD'S LARGEST HVACR MARKETPLACE

JAN 30-FEB 1 LAS VEGAS 2017