December 2014 |
[an error occurred while processing this directive] |
If Buildings Could Tell Us What’s Wrong Fault Detection and Diagnostics Moves into the Buildings Sector |
Feature article from the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory Nov 2014 Allan Chen <a_chen@lbl.gov> |
Articles |
Interviews |
Releases |
New Products |
Reviews |
[an error occurred while processing this directive] |
Editorial |
Events |
Sponsors |
Site Search |
Newsletters |
[an error occurred while processing this directive] |
Archives |
Past Issues |
Home |
Editors |
eDucation |
[an error occurred while processing this directive] |
Training |
Links |
Software |
Subscribe |
[an error occurred while processing this directive] |
When
a commercial building doesn't work properly, its occupants suffer, it
wastes energy, and expensive equipment can fail if a small problem
spirals out of control.
The buildings industry has taken big steps in recent years towards
better systems to monitor and control energy use in buildings, but it
is still struggling to develop software that can pinpoint and diagnose
a problem quickly and precisely, and to provide building managers with
actionable information.
"The current tools are limited in scope, hard to use, and incomplete.
They provide little or no ability to provide feedback and diagnostics,"
says Michael Sohn, Deputy Leader of the Sustainable Energy Systems
Group at Lawrence Berkeley National Laboratory (Berkeley Lab).
Figure 1 A model-based FDD (fault detection and diagnostics) workflow.
Sohn and his colleagues are developing
methods of applying Fault Detection and Diagnostics (FDD), a technology
used routinely in industrial process control and automotive and
aerospace engineering, to rapidly diagnose problems in buildings and
inform human operators what needs to be fixed before they turn into
bigger problems. Sohn's group is a part of Berkeley Lab's Environmental
Energy Technologies Division (EETD), but research addressing sensors
and controls at Berkeley Lab is broad. Sohn's collaborators are in the
Simulation Research Group, while related research on energy information
systems is based in the Commercial Building Systems Group.
The FDD technology that this team is developing offers many new
benefits to building applications. It can provide guidance even when
the data are noisy or incomplete. It can identify numerous simultaneous
faults, not just one at a time, and it can operate in near real-time to
reveal those faults quickly. It functions under both steady-state and
dynamic conditions, which is what the electric grid is evolving
towards. Changing conditions on the grid, including the increased use
of demand response to hedge power availability, and varying prices and
demand resulting from highly variable weather, will increasingly force
building managers to adjust energy consumption in real time.
Complexity of HVAC Systems a Big Concern
Heating, ventilation and air conditioning (HVAC) systems are usually a
building's most complex system, as well as its biggest energy consumer.
When they are not working properly, the consequences are expensive.
According to research at Berkeley Lab, the 13 most common faults in
commercial buildings in the U.S. caused $3.3 billion in annual energy
waste.
Unfortunately, faults in building systems are not uncommon.
Other studies have surveyed air conditioning units in commercial
buildings, and found that substantial numbers of them, sometimes more
than 90 percent, were operating with one or more faults.
Keeping HVAC systems in good repair is a full-time job for a building
manager. Ensuring that HVAC systems provide peak performance and
comfort to building occupants while minimizing their energy use is only
now becoming possible, thanks to the increased use of sensors and
controls in the form of energy information systems (EIS) and energy
management systems (EMS).
"The idea is called sensor-data fusion," says Sohn. "It's become
current in the buildings industry, and it means the merging of big data
with data analysis." Accomplishing this transition requires the
development of new mathematical techniques and software that can deal
with building data that are less than perfect and can handle the needs
of building managers for quick, easy-to-understand information about
the sources of problems.
Sohn, Marco Bonvini, and their colleagues have developed an algorithm
that can reliably detect and estimate the magnitude of multiple,
simultaneous fault conditions in buildings, in spite of messy or
incomplete data. "What's unique about this algorithm is that it works
in real-time—it can detect faults on the fly," says Bonvini. Their
algorithm can tell building operators such things as the probability
that the fault is real, its causes, and its impact on energy use in the
building.
"As meters pick up fouling in HVAC system pumps, for example, the data
become noisier," says Sohn. "The algorithm we developed is statistical
in nature, so it incorporates the variability error that's in the
measurements. Without this technique, the monitoring system could
indicate too many false positives, or what's worse, it would miss too
many false negatives—real problems in the system. That would result in
building managers being less trusting of the results."
A Physics-based Approach
The FDD approach used in these tools is not only statistically robust,
it is grounded in the real behavior of these systems. "With the tools
online, we can consider a physics-based approach to system
optimization," says Michael Wetter, Deputy Leader of the Simulation
Research Group, and a Computational Staff Scientist at EETD.
The software presents various options, such as using a sequence of
chillers to get the desired result, or a sequence of on-off commands,
or both. It allows users to consider whether pre-cooling or pre-heating
the building would work. It opens up new options for managing the
energy use of and comfort within buildings.
Bonvini, a postdoctoral scholar scientist in the Simulation Research
Group, worked on the programming that allows the algorithm to work
within an energy management software tool chain for the design and
operations phases of buildings. The software is model-based. It
compares the real data from building sensors to what the data should
look like if the building equipment were to be functioning
properly—data generated by its internal model of the equipment. The
software can be used during the design phase of the building's HVAC
system, and the system specification data captured during the design
phase can then be used during the operation of the building.
In the model-based FDD workflow (Figure 1), a building designer uses
the model library embedded within a simulation program to design a
building and test its energy performance. The building is built and
occupied. "An energy information system records the performance of the
building, which is available to building managers," says Bonvini.
"During its operation, the same model used in the design phase can be
reused by the FDD algorithm to reduce the impact of faults on energy
consumption and avoid serious damage to equipment."
This software tool chain is one of the first to incorporate FDD for
buildings that can be used in both the design and operational phases of
buildings. It uses both the Functional Mockup Interface (FMI) Standard
and the Modelica open modeling language—two standards that the
international building community is using to ensure that a variety of
next-generation building software tools are all able to communicate
with each other. Berkeley Lab and RWTH Aachen, Germany, co-lead an
international project, Annex 60, under the auspices of the
International Energy Agency to develop open-sourced next-generation
building and energy system software tools based on the Modelica and FMI
standards. "The connection between the algorithm and the simulation
software, which could be any of several existing programs like
OpenModelica or MATLAB/Simulink, is made possible by the FMI standard
interface." Says Bonvini. "It expands the software tool chain available
to the building industry, and is one of the first to combine models
with real data to support building operations."
"The Modelica Buildings Library is a free, modular, open-source library
of components and systems models," says Wetter. "It allows users to
rapidly prototype innovative HVAC systems, and in particular, design
and test the performance of actual supervisory control algorithms which
can be deployed directly to building automation systems. Modelica can
also be used for the analysis of the operation of existing building
systems." Wetter leads the team developing the Modelica Library in EETD
and in Annex 60.
The Modelica Buildings Library has more than 300 models and functions.
Wetter's team is now extending the library with another 100 models that
will allow users to develop systems and controls for buildings to
smart-grid integration. The team is also using the library to test how
the EnergyPlus simulation engine can be improved to make it more
flexible in assessing low-energy technologies and control sequences at
reduced computing time. "With these rapid prototyping capabilities, we
will put building designers in a position where they can invent new
HVAC configurations and new ways for controlling buildings, test them
in a variety of simulation scenarios, and then use the same computer
code to operate actual buildings without the cost of reprogramming
control sequences in a building automation system," says Wetter.
Proving the Algorithm in the Field
The development work on the algorithm is part of a larger three-year
EETD project (now in its second year) to demonstrate and test real-time
FDD in the field. Mary Ann Piette, Principal Investigator and Head of
EETD's Building Technology and Urban Systems (BTUS) Department, is
leading the effort to test the FDD software developed in this project.
Jessica Granderson, Co-PI and BTUS Deputy Head, is overseeing the
installation and development of the energy management systems for the
buildings. Field tests are now under way at a large U.S. university, in
partnership with facilities managers there, to study the performance of
the algorithm. The team has also submitted software disclosures for two
algorithms in the software package—a prerequisite to offering the
software for licensing.
[an error occurred while processing this directive]
The team will modify and correct the algorithm
and software to meet the needs of the facilities managers and address
any problems they find. If the initial testing is successful, they will
deploy the software to many U.S. Department of Defense (DoD) buildings.
The DoD, along with other agencies, is working to meet federal
requirements to reduce the energy intensity in their buildings by 3
percent annually through the end of fiscal year (FY) 2015 or 30 percent
total by FY 2015 compared to FY 2003 baseline levels.
"What we have found is that deploying the algorithm into buildings can
be the biggest challenge because it has both managerial and technical
dimensions," says Granderson. Ensuring that facilities managers
understand how to interpret information from the tools, and that the
information they are receiving is what is they need, will be a key
outcome of the field-testing and deployment.
However, success will bring rewards. "We believe that implementation of
a software system with this algorithm will result in U.S. building
energy savings of more than 10 percent per year," says Sohn.
Marco Bonvini, Michael D. Sohn, Jessica Granderson, Michael Wetter, and
Mary Ann Piette. "Robust on-line fault detection diagnosis for HVAC
components based on nonlinear state estimation techniques." Applied Energy 124(1) 156–166, July 2014. DOI: 10.1016/j.apenergy.2014.03.009.
Marco Bonvini, Mary Ann Piette, Michael Wetter, Jessica Granderson, and Michael D. Sohn. Bridging the Gap Between Simulation and the Real World: An Application to FDD. Presented at 2014 ACEEE Summer Study on Energy Efficiency in Buildings.
This research is funded by the U.S. Department of Energy's Office of
Energy Efficiency and Renewable Energy and U.S. Department of Defense's
Environmental Security Technology Certification Program (ESTCP).
[an error occurred while processing this directive]
[Click Banner To Learn More]
[Home Page] [The Automator] [About] [Subscribe ] [Contact Us]