April 2017 |
[an error occurred while processing this directive] |
New Technology and Approaches to
Significantly Cut Lab & Commercial Building Energy Use A major research study was conducted that generated a significant amount of objective data on the indoor environmental quality (IEQ) conditions of labs and vivariums that are using dynamic control of air change rate. |
Gordon P. Sharp Founder & Chairman, Aircuity Inc. Member ASHRAE |
Articles |
Interviews |
Releases |
New Products |
Reviews |
[an error occurred while processing this directive] |
Editorial |
Events |
Sponsors |
Site Search |
Newsletters |
[an error occurred while processing this directive] |
Archives |
Past Issues |
Home |
Editors |
eDucation |
[an error occurred while processing this directive] |
Training |
Links |
Software |
Subscribe |
[an error occurred while processing this directive] |
Lab
research facilities are energy intense building types due to the vast
amounts of 100% outside air required. With today’s concerns over high
energy expenses, reducing carbon footprints, plus efforts to make
facilities green and provide a better indoor environment, reducing both
new and existing lab and vivarium facility energy expenses has become a
critical challenge. The primary reason behind many labs’ high energy
expenses is the minimum ventilation or air change requirements that
often dominate the amount of outside air required by these facilities.
To date, very little objective data has been available on the
environmental and energy savings impact of both reducing and varying
air change rates. To address this gap, a major research study was
conducted that generated a significant amount of objective data on the
indoor environmental quality (IEQ) conditions of labs and vivariums
that are using dynamic control of air change rate.
OPPORTUNITY FOR OPTIMIZATION
In a large majority of labs (particularly
life sciences labs) and vivariums, the air flow is often dictated by
the minimum air change rate for the space- which might be 6 to 12 ACH
in a lab room or 12 to 20 ACH in a vivarium. If the air in these rooms
is “clean,” or free of any harmful or irritating contaminants, then a
high air change rate is not needed, at least for when the air is
clean.
One approach that has been shown to
effectively and safely vary air change rates in labs and vivariums is
to sense the quality of the air for such contaminants as volatile
organic compounds (VOC’s), ammonia, plus some other chemical vapors and
odors, as well as particulates. When the room air is free of these
contaminants, then the air change rates can possibly be reduced to 4 or
in cases 2 ACH, in a lab and 4 to 6 ACH in a vivarium.
STUDY
METHODOLOGY
The study is
believed to be the largest one done of laboratory and vivarium IEQ
conditions covering over 1,500,000 hours of lab operation from over 300
lab areas at 18 different facilities labs. In total over 20 million
sensor values were collected and analyzed including data on TVOC’s,
particles of a size range of 0.3 to 2.5 microns, carbon dioxide, and
dewpoint (absolute humidity). These sites consisted primarily of life
sciences and biology related areas as well as a smaller amount of
chemistry and physical sciences lab areas.
In order to economically and reliably
accomplish this sensing of environmental conditions in many labs and
vivarium rooms within one facility multiplexed sensing was used. With
this approach, one central set of sensors is used in a multiplexed
fashion to sense many different rooms or areas. Every 40 to 50 seconds
a sample of air from a different area is routed through a common air
sampling backbone consisting of a hollow structured cable to the
centralized set of sensors, known as a sensor suite, for measurement.
These sequential measurements are then “de-multiplexed” for each
sampled area to create distinct sensor signals used for traditional
monitoring and control. Typically, 20 to 30 areas can be sampled with
one set of sensors approximately every 15 minutes depending on the
requirements for those spaces. A variety of different types of
sensors can be used to analyze the air samples for multiple air
parameters. Figure 1 shows an example of the architecture of the
multiplexed sensing system used to implement the study.
In addition to dramatically reducing the
number of sensors needed to implement this concept by a factor of
nearly 30, this multiplexed sensing concept can measure different
contaminant or parameter level much more accurate. Typically for
controlling the lab room space airflow and IEQ it is best to look at
the contaminant levels in the room differentially- subtracting the
contaminants in the supply airflow from the exhaust or room levels. Any
offset drift error of the sensor will be the same for both measurements
since the sensor is the same for both measurements, and the offset
drift error of each is cancelled out.
RESULTS
Figure 2 shows a cumulative graph of the
average TVOC levels over all of the lab locations, representing about
1,500,000 hours of operating data. It demonstrates that labs are
typically “clean” of most chemical contaminants about 99.2% of the
time! Based on this, energy can be saved by operating at reduced
minimum air change rates the majority of the time with respect to the
TVOC sensor. When looking at each site separately (figure 3), even the
site with the greatest amount of TVOC activity, the dynamic control
concept can still save energy about 97% of the time.
Another parameter that can cause an
increase in the minimum air change rate is particles in the lab. This
could be due to a reaction that goes out of control or an acid spill
that causes an evolution of smoke or perhaps an aerosol into the lab
room. Figure 3 shows a graph of the average level of 0.3 to 2.5-micron
particle counts (PM2.5) that exceeded a background level of the lab
room’s supply air for all the different sites of the study.
The fourth figure depicts the average lab
room (dotted black line) is above the 1M pcf threshold almost 0.5% of
the time, or about 30 minutes a week on average. The individual sites
show a range of values from near zero up to about 1.5 % of the time
that airflow should be increased based on a particle event. If
this amount of time is added to the time that TVOC’s are above the
control threshold, this adds up to
only 1.2% of the time on average. In other words, minimum air
change rates of between 2 to 4 ACH can be achieved from 97% to in
excess 99.0% of the time due to the presence of either TVOC or particle
events occurring on average up to about 5 hours a week.
CONCLUSIONS
The study
showed that that particle and TVOC events occur only a few hours a week
and require high ventilation rates, however much lower flow rates can
be utilized with an automatic ACH rate control system for well over 97%
of the time. With the current challenges many organizations are facing
concerning reducing their carbon footprint, and their usage of energy,
this research, and the case study provide evidence of the significant
contribution that the demand-based control of lab air change rates can
make towards safely meeting these goals and creating measurably better
environments.
REFERENCES
American
Industrial Hygiene Association (AIHA). 2012. Laboratory ventilation.
ANSI/AIHA Standard Z9.5-2012. American Industrial Hygiene Association,
Fairfax, VA.
American Society of Heating, Refrigeration,
and Air-Condition Engineers (ASHRAE). (2011). ASHRAE handbook -
HVAC applications Chapter 16, Laboratories (pp. 16.1 to 16.22).,
Atlanta, GA: ASHRAE, Inc.
[an error occurred while processing this directive]
[Click Banner To Learn More]
[Home Page] [The Automator] [About] [Subscribe ] [Contact Us]