December 2020
AutomatedBuildings.com

[an error occurred while processing this directive]
(Click Message to Learn More)


Put your IoT data to better operational use:

5 Key learnings from equipment manufacturers

By Elly Schietse - CMO Waylay

www.waylay.io



 

Articles
Interviews
Releases
New Products
Reviews
[an error occurred while processing this directive]
Editorial
Events
Sponsors
Site Search
Newsletters
[an error occurred while processing this directive]
Archives
Past Issues
Home
Editors
eDucation
[an error occurred while processing this directive]
Links
Software
[an error occurred while processing this directive]

Waylay has been in business since 2014 and from meeting with equipment manufacturers across the world, we have identified 5 key learnings to put IoT data to better operational use.
It is obvious today that IoT facilitates the transition to optimized after-sales support and service based business models, but that will only work if done right and if the following five statements are taken into consideration.

 

  1. Move beyond dashboard monitoring
  2. Look beyond R&D for content creation
  3. Take a results-oriented approach to analytics & AI
  4. Be aware of reality of scattered information
  5. Not all assets are connected from day one

 

The IoT should help product companies to offer outcome-based service contracts and to move away from one-off sales and their break-&-fix approach. Equipment manufacturers will migrate to new business models that rely on access to digital twin data that continuously monitor the equipment and offer a service contract with a guaranteed service level and quality.

Waylay has been working with equipment manufacturers for years and we see that IoT is the enabler to help these companies to optimize their after sales support and from this experience, Waylay has detected a number of pitfalls and dependencies to make this shift towards outcome-based service models successful.

1.  Move beyond dashboard monitoring

IoT data provide valuable insights but to get to its full exploit, equipment manufacturers need to move beyond dashboard monitoring. Data is a company’s crude oil, but needs refining to extract its true gold. The first step is collecting data, visualizing it, building dashboards and creating alarms in order to provide tech people with access and visibility on what is happening with the equipment. In a second step, companies will want to share these data with other stakeholders within the company, with external customers and with partners. Data needs to be enriched so that the right set of people get access to the relevant set of data and can be shared via integration with other systems. In the next step, equipment manufacturers will want to further optimize after-sales support through the use of IoT data. This is the domain where analytics, prediction algorithm and anomaly detection play a key role. And finally companies will start using “as a Service” business models which are not only depending on technology, but also imply a complete overhaul of the go-to-market of equipment manufacturers and their customers. In short, dashboard monitoring is indeed the first step, but also only the first step to unfold the full potential of IoT data.

 

fig1

2.  Look beyond software R&D for content creation

Data scientists and domain experts know a lot about their equipment, but cannot fully take advantage of their expertise as they have to funnel their ideas and proposals through their software R&D teams. In a standard R&D cycle, field technicians, domain experts, data scientists as well as the final customers have their own ideas on how the product could or should evolve. All the different requirements and expectations will be pushed into a classical software R&D funnel which is often driven and owned by internal IT partners and external IT parties. These requirements will go through an iterative development cycle that typically takes some 6 months before a new release or new product is ready.

Today Waylay offers a fast-track alternative with their low code approach which allows non-software developers to also create content: data scientists and domain experts can add their own algorithms and analytics without having to rely on a full R&D cycle, which leads to a much faster time to market and democratization of analytics capabilities within every organization.

3.  Take a results oriented approach to analytics & AI

Companies wanting to exploit their data, should not only look at analytics and AI from a technology perspective, but instead start from the use case and use AI to get to the desired result. And this reversed concept holds two components that are not necessarily sequential steps, but often happen at the same time.

 

First, brilliant data scientists can develop analytics or machine learning algorithms based on their favorite toolstack. But next, the question arises on how to make the algorithms operational, how to test different hypotheses and how to apply the algorithms on large sets of data. This is where data scientists often get stuck, as they need a software development cycle and a lot of patience to experiment with their algorithms and fine-tune the business cases. With Waylay, data scientists can integrate their algorithms into the automation flows, no matter how the algorithm was developed.

 

In addition, to obtain the best results in analytics, companies need to combine domain expertise, their deep knowledge of equipment and physical processes with analytics algorithms. Not just one or the other, but a combination of both. Waylay helps to express these heuristics with a holistic approach and embeds the algorithm for best results in any specific use case.

4.  Be aware of reality of scattered information

Often we think of IoT as a greenfield situation, but in real life it is brownfield and businesses need to combine data from different sources to get to the right outcome.

Obviously, data sources are diverse and can originate from IoT, OT and IT information.

Sensors or IoT gateways provide large amounts of data that live in IoT platforms, IT environments collect information from ERP systems and asset management systems, OT gathers data through SCADA systems and finally, the data influx from analytics and machine learning algorithms can complete the IoT data abundance. Only if we can ingest, process and combine this plethora of data in a flexible and automated way, we can generate relevant and actionable results.

5.  Not all assets are connected from day 1

In an ideal world, all assets would be connected, but in reality that is often not the case (yet) at the start of an IoT trajectory. However, there is definitely real value, that can be extracted, for the assets not yet connected. For assets that are disconnected, log files can be uploaded periodically as they can be retrieved from the equipment and fed into the system for further processing. So next to streaming processing for connected equipment, there is also the need to work with batch processing data for non-connected equipment where the same business logic can be applied for both sets of data. From then, equipment manufacturers will have a value proposition for both connected as well as non-connected devices.

fig2

 

 

Conclusion

We will see the world evolving from one-off product sales to outcome-based business models in the next few years. IoT is a great enabler for new business models, if done right and Waylay empowers organizations to focus on concrete business value and outcomes rather than low level IT details. It empowers field technicians, data scientists and domain experts to express their domain knowledge through novel analytics algorithms and allows them to experiment with and discover the real value of their data. Via integration of IoT, OT and IT, Waylay enables optimized processes through integration with the equipment manufacturers’ specific line of business applications. Combining these five learnings empowers equipment manufacturers to get more out of the IoT data they collect.  Equipment manufacturers enable the domain experts to productize their domain knowledge in an efficient way and fast, in a matter of just weeks, rather than a development cycle of several months.

 

Waylay provides the data processing technology that allows companies to do more with the data they collect, through a low code development approach that brings new use cases to market quickly and at a competitive TCO.

 

About the Author

Elly Schietse is CMO with Waylay.

Waylay is a leading automation platform provider for the Internet of Things. With Waylay, enterprises put their IoT data to immediate operational use by automating business workflows that provide the missing link between IoT solutions, enterprise IT systems and cloud services.

Elly Schietse has a broad experience in marketing and before joining Waylay, she has always worked in IT, software and high-tech companies. Elly was part of the GreenPeak Technologies management team (semiconductor company wireless chips in IoT) and facilitated and shaped the start-up until it was successful and acquired by Qorvo (RF semiconductor company).
As an evangelist of the Internet of Things, Elly has been enriching people’s views of how technology and the IoT can create a better world and facilitate new revenue models. Business dynamics and change processes are in her DNA and an eternal source of inspiration and fascination.

elly

www.waylay.io

 

Waylay contact info

Elly Schietse - CMO

Elly.schietse@waylay.io

+32479761825


















footer

[an error occurred while processing this directive]
[Click Banner To Learn More]

[Home Page]  [The Automator]  [About]  [Subscribe ]  [Contact Us]

Events

Want Ads

Our Sponsors

Resources