January 2012 |
[an error occurred while processing this directive] |
Addressable Lighting Control
Systems
Help buildings achieve coveted USGBC LEED certification |
Terry Mocherniak,
Chief Operating Officer, |
Articles |
Interviews |
Releases |
New Products |
Reviews |
[an error occurred while processing this directive] |
Editorial |
Events |
Sponsors |
Site Search |
Newsletters |
[an error occurred while processing this directive] |
Archives |
Past Issues |
Home |
Editors |
eDucation |
[an error occurred while processing this directive] |
Training |
Links |
Software |
Subscribe |
[an error occurred while processing this directive] |
With today’s broad
awareness that green buildings offer lower operating
costs, increased value and improved ROI, the U.S. Green Building
Council’s LEED®
(Leadership in Energy and Environmental
Design)
certification has become the framework of choice for achieving
sustainability at commercial properties. Within this context, lighting
– which is the single largest energy drain in a commercial building
– dominates the opportunity for energy savings and can potentially
contribute up to 19 credits toward the coveted LEED certification.
Advanced lighting control systems serve as an indispensable tool in
achieving that goal.
More
specifically, an addressable dimming system, such as the Encelium
Energy Control System™ (ECS) from OSRAM SYLVANIA,
allows for individual
controlling of each lighting fixture or peripheral device (such as
occupancy sensors, photo sensors and wall controllers) in a facility.
All devices are networked and centrally controlled through a central
software interface. This allows for addressable dimming or switching of
light fixtures independent of electrical circuiting for the purpose of
energy management. Once addressable dimming controls are implemented on
a facility-wide basis, a number of advanced lighting energy management
strategies – such as daylight harvesting, load shedding, smart time
scheduling, task tuning, occupancy sensing and personal control – can
help to optimize energy performance and improve lighting quality.
Why LEED?
The LEED rating system is designed for rating new and existing
commercial, institutional, and residential buildings, as well as entire
neighborhood developments. They are based on accepted energy and
environmental principles and strike a balance between known,
established practices and emerging concepts. Each rating system is
organized into five environmental categories. Those are
sustainable
sites, water efficiency, energy and atmosphere, materials and
resources, and indoor environmental quality.
How to Earn LEED Credits
Implementation of a proper lighting control system is pivotal as energy
performance is the largest driver of points needed to qualify for LEED
certification. Buildings can potentially earn up to 19 credits toward
the minimum 40 credits through efforts to “Optimize Energy
Performance,” a subcategory of “Energy & Atmosphere.”
These credits are based on entire building energy use, not just
lighting. That said, reductions in lighting energy have profound
impacts on building energy usage and may also result in associated
reduction of HVAC loads. Studies by Pacific Gas and Electric Company’s
lighting team and Lawrence
Berkeley National Laboratory show that
advanced lighting controls, in conjunction with various energy
management strategies, can typically yield a combined lighting energy
savings of 40 to 80 percent in office buildings.
When it comes to the LEED “Innovation in Design” category, an
addressable lighting control system can contribute to earning points in
a number of pilot subcategories. These include light pollution
reduction, demand response, quality interior lighting, advanced energy
metering, and integrated process. Additional credits can be achieved in
“Sustainable Sites” and “Indoor Environmental Quality.”
[an error occurred while processing this directive]How Energy Management
Strategies Work
The Encelium ECS uses the collaborative power of addressable networking
technology in conjunction with advanced control hardware and software
and can help clients achieve LEED energy credits – for both new
construction and retrofits – in multiple ways. This includes
simultaneous use of the six aforementioned energy management
strategies.
Through smart time scheduling, lights in a facility can be
turned on,
off, or dimmed according to day, night, holiday and other schedules.
Addressable dimming controls offer the ability to program time
schedules from control zones as small as an individual workspace or
office. Smart time scheduling can net typical lighting energy savings
in the range of 15% to 25%.
Daylight harvesting is another key strategy. As
daylight levels vary,
individual fixtures or zones are dimmed up or down so that illumination
is maintained evenly at the desired level throughout the space. Dimming
in response to daylight can be successfully used as a much more
aggressive method of daily peak load management in buildings where
daylight is available and peak load is considered problematic. Daylight
harvesting can net savings in the range of 20% to 40%.
Personal lighting control refers to the use of a
PC, IP phone or
hand-held wireless device for individuals to control lighting within
their workspace. Personal control not only offers greater occupant
comfort and environmental control, but also contributes to energy
savings, typically between 7% to 23%, due to the inevitable dimming of
lighting based on tasks or personal preferences. Studies of personal
lighting control suggest that it offers office occupants a more
comfortable physical work environment while also delivering energy
savings.
Standalone occupancy sensors are well-suited for discrete
rooms with
intermittent occupancy and deliver reasonable energy savings. However,
utilization of addressable lighting controls can yield even greater
savings due to the granularity of the control and the ability to either
turn off or dim when no occupancy is detected. On average, occupancy
control can net a lighting energy savings in the range of 20% to 43%.
Another strategy is task tuning, which amounts to savings between 20%
to as much as 50%. Commercial spaces are constantly re-configured or
re-purposed for different uses or tasks. This requires changes in light
levels to suit the particular use of a workspace or task. Use of
addressable dimming controls means light levels can be tuned at the
individual fixture level through a control software application. In
fluorescent dimming systems, this reduction in light output or lumens
translates directly into energy savings.
Variable load shedding is also employed as a
strategy. Most commercial
and industrial facilities pay a considerable portion (as high as 40%)
of their electric energy bill as demand charges for peak demand created
by electrical loads. Lighting is the second largest contributor to
summer peak demand in commercial facilities and rivals heating as the
largest contributor to a commercial building’s winter peak. As a
result, lighting in commercial buildings should be considered as a
critical sheddable load during periods of required energy curtailment.
It is cost effective for consumers to draw less power from the grid
when electricity costs are highest. Variable load control can net
typical lighting energy savings in the range of 7% to 23%.
In addition, ECS can integrate lighting controls with other building automation systems, such as HVAC, fire and security, providing facility managers the ability to monitor and control their facility from one centralized location. Also, the use of its Polaris 3D™ software can provide advanced energy modeling and analysis to optimize the lighting control system’s energy performance. A web-based application, Polaris 3D features an interactive three-dimensional view of a building or complex in real-time and stores system data to enable various reporting features through the Energy Reporting Module.
Polaris 3D utilizes Microsoft's Silverlight technology, allowing access
to the installed system from a simple web browser. As a result of that
access, the installation of software is eliminated, leading to faster
set-up and start times as well as fewer IT security issues. That ease
of access also facilitates the integration of Polaris 3D with other
web-based control systems that may be in place in a given facility or
group of buildings.
Operationally, Polaris 3D provides a dramatic, color gradient
representation of lighting system data as a means of identifying areas
and trends of lighting inefficiency and operational anomalies
throughout a given facility. This data includes lighting status (on or
off) and building-wide lighting levels, load shedding status, lighting
power density and energy consumption, occupancy status, and comparative
energy trends. The color gradient view itself has been characterized as
resembling a television weather map, with its varied "hot" and "cold"
spots.
The Polaris 3D system is also able to monitor non-lighting conditions
if ECS is interfaced with either Encelium BACnet or Niagara Ax. With
that integration in place, such parameters as ambient air temperature,
carbon dioxide levels, and general air quality can also be indicated in
the 3D color gradient view.
Case Study: Goshow Architects’
Headquarters in Manhattan
Goshow Architects, one of the nation’s leading
sustainable design
architectural firms, had two primary goals when it relocated to a new
8,000 SF-office space on West 28th Street in NYC. Those were to design
a sustainable office space and certify the project under the
LEED-Commercial Interiors rating system. One major obstacle was
that the HVAC system was owned and operated by the landlord. Therefore,
in order to make an impact on the energy usage of the space, the focus
shifted to energy-efficient lighting and installation of the Encelium
ECS.
The results have far exceeded original project objectives. Lighting
energy consumption has reduced by 49.6%, lighting energy demand has
been cut by 37.9%, and 29,412 lbs. of CO2 emissions have been
eliminated. With the help of ECS, Goshow’s headquarters is now LEED-CI
certified and serves as a prime example of green building at its best.
For more information, please see my white paper entitled Obtaining LEED Points With Addressable Dimming Controls.
About the Author
Terry Mocherniak, director global business development for the LMS
business unit of OSRAM SYLVANIA Encelium, possesses more than 18 years
of experience in the advanced lighting technology sector. Prior to this
position, Mocherniak was the managing partner of Value Added Ventures
Corporation, a Toronto, Canada-based venture capital firm. In addition,
he co-founded and served as the chief executive officer of Lumion
Corporation, an electronic ballast and lighting control manufacturer
based in Canada.
[an error occurred while processing this directive]
[Click Banner To Learn More]
[Home Page] [The Automator] [About] [Subscribe ] [Contact Us]