September 2016 |
[an error occurred while processing this directive] |
When Will
Machine Learning Reach Smart Buildings? There is a Mount Olympus-like battle over Machine Learning dominance happening among Tech Titans. Smart Buildings and the IoT exist in the weather created by that battle. |
Alper Üzmezler, BASSG LLC. & Therese Sullivan, Principal, |
Articles |
Interviews |
Releases |
New Products |
Reviews |
[an error occurred while processing this directive] |
Editorial |
Events |
Sponsors |
Site Search |
Newsletters |
[an error occurred while processing this directive] |
Archives |
Past Issues |
Home |
Editors |
eDucation |
[an error occurred while processing this directive] |
Training |
Links |
Software |
Subscribe |
[an error occurred while processing this directive] |
Google,
Amazon and Facebook are in the midst of reinventing themselves as
Machine Learning (ML) companies. In fact, they are in heated battle to
be ML’s #1 contender. They’ve recognized that ML is the edge that they
need to be the best in advertising, cars, consumer marketplaces or
whatever other business they’d like to enter in the future. ML
algorithms have advantageous self-correcting behaviors that will be the
best navigators of a digitized world. But, these come at the price of
being more complex to understand and work with than, for example,
rule-based analytics programs. And they require a continuous and ample
supply of structured data to deliver any meaningful results. When Amazon Invests $35 Million Into Nest Competitor Ecobee,
we can be sure that it wants access to contextual data from home owners to
better compete with Google in ML. But how about all of the other
software and hardware developers in the Smart Buildings, Smart Grid,
and Smart City markets that are now touting their ML capabilities? Can
they make the claims of an Amazon or Google?
The Machine Learning Club actually has very high barriers to entry, in
terms of the data, patience and deep pockets required. These factors
make ML impractical for most Commercial & Industrial applications
today, including Smart Building edge analytics. But that is no reason not to get started readying your
buildings for Machine Learning right away. ML is coming and there is
value to unleash just in being prepared. You can start by structuring
all building design, construction, operations and maintenance
activities around the concept of an IoT Platform that supports unobstructed data flow
and simple feedback loops. The main building blocks will be edge
controllers, cloud services and a library of powerful data analytics
apps.
There is no technology more imperative to get right, right now, than data strategy. Dan Hughes, Director of Data and Information Products for the Royal Institute of Chartered Surveyors (RICS), just published this chart plotting what new technologies property managers should most concern themselves with and when. He too puts ‘data’ as the most important area of investment and attention. If you get this right, you’ll be poised to leverage more futuristic tech like ML when the time is right.
Machine Learning Defined and Located
To plot where we are right now on Machine Learning’s
evolutionary curve, it is useful to remember how companies like Google,
Facebook and Amazon took shape to begin with. Before you could have
Google Spiders crawling the
Worldwide Web, you needed to have the HTML language and a lot of people
– ie, the Commons –
structuring their information as HTML web pages. A big part of the Commons were product sellers, and
Amazon trained its spiders on their particular structured data –
product SKU’s, prices, etc. Facebook focused on getting another segment
of the Commons to give up
their data to HTML publication and self-structuring. Today Facebook
rules the friends & family social graph. In all cases, without a
constant supply of data structured for free by users, there would have
been no web for algorithms to crawl and no titan-sized companies
emerging from the effort. Currently, the only part of the Commons structuring
buildings-related data in HTML is the Project Haystack open source
organization. It’s a hard-working community but cannot be
compared to the armies of online product sellers that embraced the
Amazon marketplace app or to all the ‘friends’ on Facebook.
In an article that bounced to the top of social news feeds tuned to
Machine Learning this summer, The Business Implications of Machine Learning,
Data Strategist Drew Breunig makes the point this way: “Machine
Learning is only as good as its training data.” He goes on to define training data as “Data which has
been tagged, categorized, or otherwise sorted by humans.” Though the
author comes from the perspective of a data scientist focused on online
advertising challenges, he lays out a universal framework for
understanding the ML-transformed tech landscape of today and delves
into the hardware, software and data implications. He explains the role
of Reciprocal Data Applications (RDAs) –Facebook Photo, Amazon’s Alexa,
Google-Nest OS. He makes a good case for why there is no near-term risk
that one of these titans of ML will swallow up the building
optimization market soon. 1) There is not enough of the Commons creating training data to feed ML algorithms
for optimizing typical commercial buildings. And 2) because each
building needs to be uniquely modeled for ML, there is not enough money
to be made in the effort.
Published just on time to
serve as illustration for this article, the Gartner
Group has just released its 2016 Hype Cycle for Emerging Technologies.
Machine Learning is at the very top of the curve, poised to dive into
the Trough of Disillusionment.
Realm of the ML-Ready
A company with the size and might of Google is
not bounded by others’ realities. In July, it released a story about
how it is using Machine Learning algorithms to cut data center energy
bills. Results from its first experiments with this include a 40
percent reduction in the amount of electricity needed for
cooling. This is a real case study of ML success in HVAC. But, it
is also a statement about why the approach is so out of reach for most
Smart-Building app developers. Google paid $600M to buy the Artificial
Intelligence (AI) company that designed and led this project, and it
expects to save hundreds of millions of dollars in energy costs yearly.
Moreover, don’t expect Google to be commercializing the ML algorithms
it used to achieve this success soon. Better Data Center Infrastructure
Management (DCIM) is another way that it competes with Amazon as a
Cloud Host, so it will protect that intellectual property. However, in
the future, it will likely be getting into the business of Algorithms
as a Service.
IBM is another big tech company positioning itself for leadership in
ML. The IBM Watson IoT Platform is the flagship for this effort. (You
will find ‘IoT Platforms’ category label about seven beads behind ML on
the Gartner hype cycle.) The showcase examples of IBM Watson IoT are like this
oil rig case study. The big money in natural resource extraction
was sufficient motivation to pay for the pioneering data science. Also,
in an industrial plant setting like an oil rig where just about all
operations are already mission-critical and unpredictable humans inputs
have been minimized, there are fewer what-if possibilities. As with the
Google data center, this is fertile ground for ML. It’s also on the
other end of the spectrum from a modern multi-story corporate or
institutional building.
The takeaway lessons from these first case studies are that you should
ask three questions before considering ML for buildings optimization:
Most Smart Buildings applications wouldn’t be above the
bar set by these practical criteria. So the building automation
industry at large isn’t really ready for Google, Amazon, or IBM-style
ML today. So don’t look to them for a Smart Buildings Reciprocal
Data Application (RDA) that will spin up like a tornado inspiring
knowledgeable people to donate training data.
Readying Your Buildings for ML
Recognizing that it is the lack of structured HTML data
– ie, a web for an algorithmic spider to crawl – that is holding back
ML in Smart Buildings, the question is how will that web be built.
Scott Muench of J2 Innovations in his July article, The Strategy and Payoffs of Meta-Data Tagging,
explains all the benefits possible when a building operator insists on
open, industry-standard systematic tagging and data modeling. These are
harvestable even before building operators consider the head-start they
will have in the deployment of ML.
These advantages will encourage the construction of a communal semantic
web of buildings. All the buildings professions will start to
contribute. According to Muench, “Requirements will be written into
specifications to the effect that all vendors of equipment, meters,
other building-connected devices and software adhere to standard
tagging and modeling conventions. Every device or piece of software
will be delivered with a zip file containing Haystack-compliant data
models.” BASSG’s Edge Analytics Controller is the first BAS
edge device that already has Haystack functionality built into its
software stack.
[an error occurred while processing this directive]Once whole buildings, even whole cities, are modeled in
a semantic web
system like Project Haystack, buildings
data scientists (a new profession) can take over, knowing the training data needed to support ML
algorithms is there. Like successful pattern-recognition
analytics today–for example, SkySpark from SkyFoundry—ML spiders will
be built to look for situations with known patterns that can be
expressed as variables in a complex algorithm. They will collect the
necessary data, grabbing all the points involved from the zone,
multizone, whole building, whole campus levels—whatever the scope
involves. As long as they are working on current reliable data, they
will return impressive results.
You will know when Machine Learning becomes a reality in your building
when computers, rather than engineers, start making decisions. For
example, today data analytics programs regularly crunch building
operational data looking for faults and anomalies and generating alerts
and alarms. An engineer looks at that data, makes some decisions about
it, and possibly takes some actions, like replacing a chiller. In the
era of ML, you would start with a question “Do we need a new chiller?”
Then you would give the algorithm the data set and it will tell you
what to do. As Google and many other data center operators have already
found out, the ML approach to infrastructure management pays off. They
are constantly adding and swapping servers with changing power,
thermal, downtime risk and cost implications. DCIM is definitely an
early market for the type of decision support that ML algorithms
provide.
Building equipment manufacturers are also positioned to take early advantage of ML. There has been a growing trend to incorporate sensors and telematics
(in other words, the IoT) into maintenance and service contracts.
Collecting and sending operational data to factory technicians for
remote monitoring improves preventive maintenance, helps to avoid
warranty disputes, and opens the door to more flexible
pay-for-performance pricing models. Applying ML algorithms to the
collective data for a particular make and model AHU, for example, is a
natural next step. The investment in algorithm development makes
financial sense when it can optimize thousands of AHUs.
As previously stated, ML leaders will soon be getting into the
Algorithms as a Service business. Pivots and advancements happen fast
in the modern-day Mount Olympus settings like Google and Amazon
research environments. The Artificial Intelligence (AI) unit known as
Deep Mind that led the Google data center ML project has already been
merged into TensorFlow,
an open source software library for Machine Learning launched and
curated by the Google Brain team. Resources like TensorFlow will make
access to the latest AI methods and data science talent more
affordable. Of course, to take advantage of these services for building
optimization, you will still need to start with fully tagged building
assets. Again, owner/operators that get started today on this will be
among the first to be able to leverage Machine Learning to gain
competitive advantage in their own businesses tomorrow.
[an error occurred while processing this directive]
[Click Banner To Learn More]
[Home Page] [The Automator] [About] [Subscribe ] [Contact Us]